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Absbad  The massless representations of the conformal quantum algebra Up(su(2, 2)) for 
complex q such that 141 = 1 are studied in detail. By factorizing out all singular vectors of Ihe 
corresponding Verma modules, a simple basis for these representations is explicitly constructed. 
This basis is new also for the usual conformal algebra su(2.2). This construction allows a 
suaighlfonvard merit of the case q a mor of unity, when the representations are unitary and 
finitedimensional. 

1. Introduction 

The conformal quantum algebraUq(su(2, 2)) is a q-deformation of the ordinary Lie algebra 
su(2,Z) [l]. Some results on the study of its irreducible representations were presented in 
[Z]. In particular, for generic q. such that IqI = 1, the representations with positive energy 
are deformations of the corresponding representations of su(2,Z). When the deformation 
parameter q is a root of unity, the picture of the representations changes drastically and all 
positive-energy irreducible representations are unitary and finite-dimensional. 

In the present paper we continue the study of the representations of Uq(su(2, Z)), by 
examining in detail the case of the massless representations. For a l l  q such that 141 = I, we 
conshuct explicitly a simple basis for the corresponding representation space. This basis 
is new also for the usual conformal algebra su(2,Z).  It is built by an explicit two-step 
factorization of all singular vectors of the corresponding Verma module over Uq(s1(4, C)) 
together with the appropriate reality condition. In this basis it is manifest that each weight of 
a massless representation has multiplicity one. Notice that these representations are pseudo- 
unitary and become unitary in the limit q + I. For q a root of unity, the basis m c a t e s  
and the representation space becomes finite-dimensional. For q = e*‘/’, N = 2,3,  . . . , all 
basis vectors have now positive norm. and the representations become unitary. Our results 
are in the most general form since the representations are obtained using factor-modules of 
Verma modules. 
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2. Preliminaries 

The quantum algebra Uq(sZ(4,C)) is defined as the associative algebra over C with 
Chevalley generators X:, ffj, j = 1,2 ,3 ,  and with relations [3,4]: 
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[ ~ j .  H ~ I  = o [H,. X,"I = +a,.& [Xj+, X;I = ~ j k [ ~ j ] ~  ( 1 4  

[x:, x:] = 0 (Ib)  

2 

(.:)'X," - [2]pX:X,"X7 + X," (X:) = 0 ( j k )  = (12), (21) ,  (B), (32) 

where [ x ] ~  = (qxp-q-x/2)/& ,i ql /z-q- l /z ,  (ajk) = (2(u,, ut)/(uj, uj)), j ,  k = 1,2 ,3 ,  
is the Cartan matix of sl(4, C); ai ,  a,, u3 are the simple roots; the non-zero products of 
the simple roots are: (a,,u,) = 2, j = 1,2 ,3 ,  @ I ,  uz) = (uz .u3 )  = -1. The non-simple 
positive roots are ut2 = 011 +al. a23 = uz + u3. E13 = ut + LYZ + u3. The elements ffj span 
the Cartan subalgebra 7i. while the elements X? generate the subalgebras @. 

The Cartan-Weyl basis for the non-simple roots is given by 14.5.11: 

) ( j k )  = (121, (23) (W rl/4 114 & * -1/4xix& x $ = f q  (4 x j x k - q  k j 

x i  - j, W 4  1/4 * * 
13 - 4 (4 xZ3-q-"4x$x:) 

- - f qT1/4(ql/4X:,X: - q-1/4x:x:,). (2b) 

All other commutation relations for the generators follow &om these definitions [ I ]  
( x ;  = X f ) :  

3. The generic case 

We Brst consider the representations of Uq(su(2, 2))  when the deformation parameter is 
not a root of unity. In this case the representations of Uq(su(2, 2)) we use are irreducible 
lowest-weight modules M" (in particular, Verma modules V " )  of Uq(s1(4, C)), together 
with the reality condition necessary for the construction of the scalar product in M A  (or 
V"),  The module M A  is given by its lowest weight A E li' (li* being the dual of li) and 
lowest-weight vector vo uo(A), such that uo is annihilated by the lowering generators, 
Xu0 = 0, X E U,(G-) and Huo = A(H)uo for any Cartan generator H. 
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In particular, we use the Verma modules V" which are the lowest-weight modules such 
that V" = U,(@) UO. Thus the Poinc6Birkhof-Witt theorem tells us that the basis of 
V" consists of monomial vectors 

(4) 

In order to consider V" as a representation of the real form we need, as in the q = 1 case, 
a Hermiticity condition invariant with respect to U&@, 2)). This is given by [Z]: 

w. - x+ kIS ,+)k,,(,+ 4 1  
1.c) - ( 13) ( 12 U )  (X:)kz(X:)"(X$)k"vo = P[,,Uo kj, kjk E Z+. 

where o acts as Ganti-linear algebra anti-involution of Uq(d(4, C)). Using the conjugation 
w, the following Uq(su(2, Z))-invariant scalar product can be defined [2]:  

pw,, w[i,)  = (P[P,VO, P,a,vo) = ( U O . ~ ( P , P , ) P I , , U O )  (6) 

with (UO, UO) = 1. 
Generically, the Verma modules V" are irreducible. A Verma module V" is reducible 

[51 iff there exists a positive root (I, (I = Ek it&, nx E Z+, (I~ being the simple roots, and 
a positive integer m, such that the following equality holds: 

- P)(H,) + m a ]  = o (7) 

where Ha = cknxHk, and p is half the sum of the positive roots; note that p(&) = 1. 
For the six positive roots of the root system of sl(4, C), one has (see [6]): 

ml = -A(&)  + 1 = 2 j ,  + 1 
mz = -A(&)+ 1 = 1 - d  - j ,  - jz 
m3 = -A(&)+ 1 = 2 j z+  1 
m12 = -A(Hd + 2 = ml + mz = 2 - d + jl - j2 
mu = -A(H=) + 2 = mz + m3 = 2 - d - jt + jz  
mi3 = -A(H13) + 3  = ml + m z  +ma = 3 - d  + jl + j z  

(84  
(8b) 
(SC) 

(8d) 
(84 
(8fi 

where we use the classical labelling of the su(2,Z) representations: d is the conformal 
dimension (or energy) and 2 jl , 2 j z  are non-negative integers fixing finite-dimensional 
irreducible representations of the Uq(su(2)) 0 Uq(su(2)) subalgebra. The latter integers 
fix also the finitdimensional irreducible representations of a q-lorentz algebra, though it 
is a subalgebra of this q-conformal algebra only for q = 1. 

Whenever (7) is satisfied, there exists a singular (null) vector U,"" in V" such that 
U,"' # uo. Xu,")" = 0, VX E U,(T) and Huy = (A + mor)(H) up", VH E 31. The 
space I"',' = Uq(B') U,"' is a proper submodule of V" isomorphic to the Verma module 
V"+mcl with a shifred, lowest weight A +ma [ 5 ] .  

The Verma module V" contains a unique proper maximal submodule I" (which contains 
all submodules I m , 9 .  Among the lowest-weight modules with lowest weight A there is 
a unique irreducible one, denoted by LA. i.e. LA = V*/Z". (If V" is irreducible then 
L A  = V".) To obtain the irreducible lowest-weight module LA we have to factor out all 
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singular vectors. First of all, we have that ml and m3 are positive, since 2jl  and 2jz  are 
non-negative integers. The corresponding singular vectors are 
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U] = (x:)2”+1uo y = (x:)2%o (9) 

and these are present for all representations we discuss. 
Further, we concentrate on the massless case [ 2 , 7 ] ,  for which 

d = j l  + j z  + 1 j l  j z  = 0. (10) 

For definiteness we choose j z  = 0. Then we see that in the case jl f 0 we have two more 
singular vectors corresponding to m12 = 1 and mi3 = 2 [2]: 

VIZ = ([2jllX:, - q”X:X:)uo d = j l  + 1 j z  = 0 mlz = 1 (11) 
u(z) - X t (  t z  t z  
13 - [Zj11[2 j1  - l I ( X l  ( X z )  - [21[2h t 1IIzi1 - ~ I X : ( X ~ ) ~ X :  

+ [ 2 j 1 +  I I [ ~ ~ I I ( x : ) ~ ( x : ) ~ ) x ~ ~ o  
d = j 1 + 1  j z = O  m 1 3 = 2 .  (12)  

Note however, that the singular vector uf‘) is a composite one. It gives no new condition 
since, factoring out the submodule Z3 generated by the singular vector u3 = X:UO, we 
factor out also the submodule Zg) generated by U$); If:’ is a submodule of Z3. 

When j t  = 0, besides (11) and ( 1 2 )  (with j l  = 0). there is another singular vector 
corresponding to m n  = 1 121: 

u ~ = X t X : u o  d = l  j l =  j z = O  m n = 1  (13) 

which is also composite. Furthermore, for j l  = 0 the vector U ~ Z  = X:X:u, is also 
composite, since in this case the submodule Zlz is also a submodule of the submodule 11 
generated by UI = X:UO. 

Let us factor out all above singular veciors. This means that in the factor representation, 
whose ground-state vector we denote by I ), we have: 

In the classical case this factor representation is still reducible [SI. Also, there is an 
additional singular vector here: 

Uf = ( X A X Z  - q-1lZX&x&)fi. (15) 

Checking singularity of U,, i.e. X , p f  = 0. we see that it is straightforward for a = 1 ,3 ,  
while fora = 2 we have to use (14b) and, if jl f 0, also (14c). Factoring out the submodule 
built on U, we obtain the irreducible lowest-weight representation LI, whose vacuum vector 
\ ) obeys the equations 
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As we noted above for jl = 0, (16c) follows from (16~) .  We also note that 

( [ ~ ~ I I x : ,  - q j 1 x & x ~ ) [ )  = 0 (17) 

which is a simple consequence of (16b, c).t 

on the vacuum I ), i.e. 
We can now explicitly give the basis of L A .  We consider the monomials as in (4), but 

- - x+ hi ~ + ) k n ( x +  k s  
[ k )  - ( 13) ( 12 23) (x:)k*(X:)k’(X:) t ’I)  =?[,!I I )  kj, kjk E Z+. (18) 

First of all we have the restrictions kl < 2jl and k3 = 0 because of (I&, b). Then we have 
klk2  = 0 because of (16~) .  since any Occurrence of XiX: is replaced by X & .  In the same 
way we have klzku = 0 because of (16d). Finally, klku = 0 because of (17). 

Thus, the basis of LA consists of the monomials 

(194 I 
@{k , t , , , )  = (x&)k(x&)e(x?l) k ,  e ,  n E Z+ 
@;k.e,ni = ( X & ) k ( X & ) e ( X ~ ) n l )  k ,  n E z+ e E I”J (19b) 
@ik , t ,n )  = ( x A ) ~ ( x ~ ~ ( x ~ ~ I  ) k ,  e ,  n E z+ 1 < n < 2jI (19c) 

the third case being absent for jl = 0; e # 0 in (19b) to avoid coincidence with (19a) for 

Note that the different vectors in (19) have different weights. Thus each weight has 
multiplicity one and is represented by a single vector. The norms squared of the basis 
vectors, 

2 -  @a 

e = o .  

(20) ~ ~ @ ~ k , L , n l l ~  = ( (k.E.n)l @?k.t.nl) 

are given explicitly by 

I l @ ~ ~ , ~ , n ~ 1 1 2 ~ k l q ! [ k + ~ l q !  [e  +nl,![n +2j11,! / [2j11,!  @la )  

~ ~ @ ~ k , e , n ) ~ ~ 2  = [k14![k + el,! [e  + n + 2 j 1 1 , ! [ n 1 , ! / [ 2 j 1 1 ~ !  ( 2 W  

( 2 W  

where [XI,! = [x] , [x  - 1Iq. .  . [ I ] ,  for x E N, [O],! 1. For the rest of this section we 
suppose that q is not a non-trivial root of unity. These norms are non-vanishing, but they 
can be negative for q # 1 and large enough k, I and n. The corresponding representations 
are then pseudo-unitary and become unitary only in the limit q + 1 ,  when all norms are 
strictly positive. 

ll@~k,J = [kl ,![k+ e+nl , !  [e lq!12j~l ,! /12j~ -nl ,!  

It will be also convenient to work with the normalized basis 

even when the norms squared are negative; this will simplify the treatment of the case of 
q being a root of unity (see next section). The vectors (22) are in fact pseudo-orthonormal 
(orthonormal for q = 1) since, as we noted above, they have different weights and one has 

@:k,e,nl, 6 f k ! , e 8 , n f ) )  = E ; e n w k k ~ a e e r a n . f  &;e,, = signII@:k,t,n)I12. (23) 

t We also use ([Zj,tl]X:,-q’IX:X:)I) = 0. (X:lX:;q”ZX&X:2)l) = Oand ( [Zjit l lX:l-qi lX:X~)l)  = 
0, which are equivalent to (16~). (16d) and (17), respechvely. 
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The transformation rules for this basis can be computed explicitly: 
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n > O  

n = O  
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We have thus proved the following theorem: 

Theorem I .  The basis vectors Q:k,e.G) given in (19) span a representation space for the 
pseudo-unitary massless irreducible representation of Y ( s u ( 2 . 2 ) )  with d = j1 + 1 ,  j? = 0, 
191 = 1, q not a non-bivial root of unity. 

Remark. Note that such a basis is also new for the algebra ~ ( 2 . 2 ) .  i.e. for q = 1. As 
already remarked, in this case the representations become unitary. Since the weight spaces 
are onedimensional, one may call the massless irreducible representatins singletons using 
terminology of [9]. 

We would also like to give an interpretation of the representation basis via character 
formulae. Such formulae represent the basis vectors through formal variables, tj = e(@,), 
j = 1, 2, 3 which correspond to the simple root vectors X:, and e ( )  have formal properties 
of the exponential function, namely, e(p)e(u)  = e(p + v) .  e(0) = 1. Thus, the non-simple 
root vectors X&, X&, XT3 are represented by 212 = e(rul2) = t l f 2 ,  tu = e(o123) = tZt3, 
113 = e(a13) = t i t 2 t3 .  When q is not a mot of 1, the massless imps can be represented by 
the following character formulae (containing the same information as (19): 

where the overall prefactor e(A) represents the lowest-weight state. 

weight is (cf e.g. [IO]) 
In the same fashion the character formula for the Verma module with the same lowest 

cb V" = e(A)/(l - s ) ( l  - f z ) ( l  - $)(1 - f d ( 1  - t d ( 1  - t13). (34) 

which has the same content as (4) with k,, kjt  E E+. 
Now we can rewite the character formula (33) as 

ch L A  = ch V"Q(t1, tz ,  t 3 )  

=chV"(I -t;"'+tyt3 - t 3 - t i t z + t ~ ' t z - t ; " ' t 2 t : + t , t ~ t :  (35) 
2 2 2  m , 2 2  - tl"'t33 + t;tz't3 - t lQ t3  + tl t2t3) 

m l = 2 j l + 1 > 1  d = j l + 1  h = 0 .  

This formula is valid for all jl E @+, j z  = 0. Note, however, that for j1 = $ the terms 
in the fourth row cancel each other out, while for j1 = 0 the terms in the third row cancel 
each other. To show that (35) concides with (33) amounts to the explicit straightforward 
division of the polynomials: 

(36) 

Formula (35) represents an alternating sign summation over a part of the Weyl group of 
sl(4. C!) and may be obtained using [ I l ,  121. Note, however, that the ultimate formula is 
(33) which we obtained in a straightforward manner. 

tz3 t3) 

(1 - t d (1  - r d ( 1  - t N -  f d ( 1  - t d l  - 113) ' 
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Finally we mention the necessary changes in order to treat the massless case with 
d = j 2  + I, j l  = 0. Instead of (16) we have: 

The character formula for j z  E $Z+, j l  = 0 is obtained from (35) by changing tl U t3, 
m~ --f m3, j l  12. 

4. The case q a root of unity 

We now turn to the case of the deformation parameter 4 being a root of unity, namely, 
q = e  2 n ' / N ,  N = 2.3,. . . . 

In this situation all Verma modules V" are reducible [5] and all irreducible 
representations are finite-dimensional 1131. There are now more singular vectors: these 
were given in [21. Instead of working with them, we can consider directly the representation 
space consbucted before and find explicitly how it is reduced in the present case. 

We consider first the norms given in (20). Using the fact that [sN], = 0. Vs E Z we 
see that the following norms vanish: 

l l@~k,e,n#'=O for k + e > N  or e + n > N  or n > N - 2 5 1  (394  

I I @ ~ ~ , ~ , J ~ = o  for k + e > ~  01 e + n >  N - ~ J ]  (39b) 

(394 

where we have decomposed 2j1 = 251 + sN, 0 < 2J1 < N, J I  E $Z+, s E Z+. Then we 
note that 

[ p  + 2j11, = [ p  + 2-71 + sN1, = (-1)'[p + 2J11, (40~)  
[ P + ~ ~ I I , ! / [ ~ ~ I I ~ !  = ( - l ) p s [ ~  +~JII,! /[~JII,!  (406) 

11@~k,e,,,112 = 0 for k + e + n > N 

and applying this to (21) we obtain 

I I @ [ ~ , ~ , ~ ~  11' = (-1)S"[klq ![k + 81, ![e + n ~ ,  ! [n  + 2J1 l4 ! / [~J~I , !  

ll@~k,f,nll12 = (-l)'('+'')[kl,![k + e],![l + n + ~JII,![~I,!/[~JI],! 

II@;~,~,~,II~ = (-l)S"[kl,![k + e+ni,!~ei,![2J1i,! /[~~1 -n],!. 

( 4 1 4  

(4 1 b) 
(414 
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Obviously the above norms can be positive for all k ,  e ,  n only if s = 2r, r E Z+. Thus, 
we recover the result announced in [2] that the finite-dimensional massless irreducible 
representations for roots of unity are unitary iff 

d = j l + 1  j z = O  2 r N < Z j l < ( 2 r + l ) N - l  V r E Z + .  (42) 

For fixed j l  in the above range, the basis of the unitary irreducible representation is given 
by 

k ,  e , n  E Z+ k + e , e + n  6 N - I n < N - 2 h  - 1 (434 
QL"1 k , n E Z +  e € N  k + e < N - l  e + n < N - 2 J 1 - 1  (43@ 

QLI k , e , n  E Z+ k +  e +n 6 N - 1 1 n < 231 (43c) 

where j j  = 31 +rN, 0 6 251 < N, r E Z+. The norms of these vectors are given by (21) 
with j l  replaced by .I]. 

Analogously to section 2, we introduce also the orthonormal basis qk,t,nl for which we 
have the same transformation laws (24)-(32), with j, replaced by 51. For consistency we 
have to check that the basis given in (43) is indeed a representation space. It is enough to 
consider the boundary cases. i.e. the cases in which acting on a vector in (43) would result 
in a vector not in (43). However, we observe simply by inspection that in all such cases 
the coefficient on the RHS of the corresponding formula in (24)-(32) is zero. (For example, 

- 1  
x~'!k,4N-ZJj-l] = O '  *{k,t-l,N-ZJil (e ' O)') 

Thus, we have proved the following theorem: 

Theorem 2. The basis vectors * T k , t , n ) ,  given in (43) span a representation space for the 
unitary massless irreducible representaoon of Uq(su(2, 2)) with d = j l  + 1, j z  = 0, and 

= e k i / N ,  

Having established the basis, we can count the number of states in it. We find that the 
number of states in (43~).  (43&), (43c) is, respectively, 

i ( N  - 2J1)(2NZ + N(4Ji + 3) + 1 - 45:) 
i ( N  - 2Ji)(N - 251 - 1)(2N +2J1 - 1) 
fJ1(3N2 - 6NJ1 - 1 +45:). 

The sum of these three numbers gives the dimension of the massless irreps, which was 

(45) 

derived in 121 from other considerations: 

d(N, A )  = 9ZN3 - N(12J: - 1 )  + 3J1(4J: - 1)l. 
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